
Operating Systems
Lecture 6

Address Translation

Prof. Mengwei Xu

10/18/24 Mengwei Xu @ BUPT 2

• Thread: a single execution sequence that represents a
separately schedulable task

Recap: Thread Abstraction

Each thread executes a sequence of instructions
(assignments, conditionals, loops, procedures, etc)
just as in the sequential programming model

The OS can run, suspend, or resume a
thread at any time

The minimal scheduling
unit in OS!

10/18/24 Mengwei Xu @ BUPT 3

• Thread: a single execution sequence that represents a
separately schedulable task

Recap: Thread Abstraction

Threads in the same process
share memory space, but
not execution context
• There will be thread context switch

10/18/24 Mengwei Xu @ BUPT 4

Recap: Thread vs. Process

Thread Process
Currency Both of them can be scheduled by OS.

Context Different threads/processes have their dedicated execution contexts
(registers values and stacks). Scheduling them incurs context switching.

Definition

A single execution sequence that
represents a separately schedulable

task
An execution of any program

The minimal scheduling unit
“a lightweight process”

The minimal dedicated memory space

Resources Consume less resources Consume more resources

Memory Threads in the same process share
memory space

Processors do not share memory
space

Communications
Easier and faster for threads in the
same process to communicate with

each other

More complex and slow for different
processes to communicate with each

other

10/18/24 Mengwei Xu @ BUPT 5

Recap: POSIX Thread Example

What’s the possible output?

10/18/24 Mengwei Xu @ BUPT 6

• Thread Control Block (TCB)
- Stack pointer : each thread needs their own stack
- Copy of processor registers

q General-purpose registers for storing intermediate values
q Special-purpose registers for storing instruction pointer and stack pointer

- Metadata
qThread ID
q Scheduling priority
q Status

- What’s different from PCB??

Recap: Thread Data Structures

10/18/24 Mengwei Xu @ BUPT 7

• Thread Control Block (TCB)
• Shared state
• OS does not enforce physical division on threads’ own separated states

- If thread A has a pointer to the stack location of thread B, can A access/modify
the variables on the stack of thread B?

Recap: Thread Data Structures

10/18/24 Mengwei Xu @ BUPT 8

• Kernel threads
- What are the use cases?

• User-level threads
- Can be implemented with or without kernel help

Recap: Thread Implementation

10/18/24 Mengwei Xu @ BUPT 9

• Create a thread
- Allocate per-thread state: theTCB and stack
- Initialize per-thread state: registers (args)
- PutTCB on ready list

• Delete a thread
- Remove the thread from the ready list so it will never run again
- Free the per-thread state allocated for the thread
- Can a thread delete itself?

• Context Switch
- Voluntary: thread_yield
- Involuntary: interrupts and exceptions

Recap: Thread Implementation

10/18/24 Mengwei Xu @ BUPT 10

• Implementing user-level multi-threaded processes through
1. Kernel threads (each thread op traps into kernel)
2. User-level libraries (no kernel support)
3. Hybrid mode

Implementing Multi-threaded Processes

Create a user-level thread
- User lib allocates a user-level

stack
- Invokes thread_create() syscall
- Stores a pointer to theTCB in

the PCB (why?)

10/18/24 Mengwei Xu @ BUPT 11

• Implementing multi-threaded processes through kernel threads
- Each thread operation invokes the corresponding kernel thread syscall

Implementing Multi-threaded Processes

Create a kernel thread
- Allocate per-thread state in

kernel: theTCB and stack
- Initialize per-thread state:

registers (args)
- PutTCB on ready list

How about join, yield, exit?

10/18/24 Mengwei Xu @ BUPT 12

• Implementing multi-threaded processes in user libraries
- The library maintains everything in user space

qTCBs, stacks, ready list, finished list
- The library determines which thread to run
- A thread op is just a procedure call

Implementing Multi-threaded Processes

10/18/24 Mengwei Xu @ BUPT 13

• Implementing multi-threaded processes in user libraries
- The library maintains everything in user space

qTCBs, stacks, ready list, finished list
- The library determines which thread to run
- A thread op is just a procedure call

• How can we make user-level threads run currently, as kernel is not
aware of their existence?
• How can program change the PC and stack pointer?

Implementing Multi-threaded Processes

10/18/24 Mengwei Xu @ BUPT 14

• Implementing multi-threaded processes in user libraries
- The library maintains everything in user space

qTCBs, stacks, ready list, finished list
- The library determines which thread to run
- A thread op is just a procedure call

• How can we make user-level threads run currently, as kernel is not
aware of their existence?
- The preemptive way: timer interrupts (upcall) from kernel
- The cooperative way: threads yield voluntarily

• How can program change the PC and stack pointer?
- jmp and esp

Implementing Multi-threaded Processes

10/18/24 Mengwei Xu @ BUPT 15

Threads in Kernel vs. User

User-levelThreads KernelThreads
Currency Both of them run currently

Context Share heap/code, but have separated stack/registers

Role of kernel No kernel assistance at all
Each thread operation invokes

kernel syscall

Speed (context switch,
creating, etc)

Fast Slow

Memory cost Small Large

I/O waiting time
Cannot avoid the I/O waiting time

(though there are certain
optimizations to do so)

Kernel can schedule another thread
when I/O blocks

Multi-core processor
No parallel on multi-core

processors

Can schedule many threads in the
same process at the same time on

multi-core processors

10/18/24 Mengwei Xu @ BUPT 16

• Implementing multi-threaded processes in hybrid way: optimizations
based on kernel threads
- Hybrid thread join: for example, no need for syscall if the thread to be joined is

already finished (with exit value saved in memory)
- Per-processor kernel thread with user-level thread implementation
- Scheduler activations: in recent Windows, the user-level scheduler can be notified

when a thread blocks in a syscall, so it can schedule another thread to fully utilize
the processor.

Implementing Multi-threaded Processes

10/18/24 Mengwei Xu @ BUPT 17

• AddressTranslation Concept
• Segmentation (分段)
• Paging (分页)

Goals for Today

10/18/24 Mengwei Xu @ BUPT 18

• Address Translation Concept
• Segmentation (分段)
• Paging (分页)

Goals for Today

10/18/24 Mengwei Xu @ BUPT 19

• From virtual memory address (虚拟内存地址) to physical memory
address (物理内存地址)

Address Translation

Processor Translation

Virtual Address
(0x0000)

invalid Throw an
exception

Physical
Memory

valid

Physical Address
(0xffff)

Data (”hello”)

10/18/24 Mengwei Xu @ BUPT 20

• From virtual memory address (虚拟内存地址) to physical memory
address (物理内存地址)
• The goals and motivations of address translation

- Memory protection
- Memory sharing
- Flexible memory placement
- Sparse addresses
- Runtime lookup efficiency
- Compact translation tables
- Portability

Address Translation

10/18/24 Mengwei Xu @ BUPT 21

• From virtual memory address (虚拟内存地址) to physical memory
address (物理内存地址)
• The goals and motivations of address translation
• When translation exists, processor uses virtual addresses, physical

memory uses physical addresses
- Not every processor/OS has address translation, e.g., certain embedded chips.

Address Translation

10/18/24 Mengwei Xu @ BUPT 22

• From virtual memory address (虚拟内存地址) to physical memory
address (物理内存地址)
• The goals and motivations of address translation
• When translation exists, processor uses virtual addresses, physical

memory uses physical addresses
• Address translation involves intensive hardware-OS cooperation

Address Translation

10/18/24 Mengwei Xu @ BUPT 23

• From virtual memory address (虚拟内存地址) to physical memory
address (物理内存地址)
• The goals and motivations of address translation
• When translation exists, processor uses virtual addresses, physical

memory uses physical addresses
• Address translation involves intensive hardware-OS cooperation
• Address space: all the addresses and state a process can touch

- Each process and kernel has different address space

Address Translation

10/18/24 Mengwei Xu @ BUPT 24

• AddressTranslation Concept
• Segmentation (分段)
• Paging (分页)

Goals for Today

10/18/24 Mengwei Xu @ BUPT 25

• Simpliest approach: base and bounds registers
- Every memory access is checked on those registers

Segmented Memory

base

base +
bounds

Processor
Virtual Address

Bound

+

>

Base

Exception

Physical Address

Physical
Memory

10/18/24 Mengwei Xu @ BUPT 26

• Segmentation with a segment table (分段表)

Segmented Memory

Segment 1

Processor
Virtual Address

+

> Exception

Physical Address

Segment
(register)

Offset
(register)

RW
R

RW
RW

Base Bound Permission
SegmentTable

Segment 2

Segment 3

Segment 4

Physical
Memory

10/18/24 Mengwei Xu @ BUPT 27

• Segmentation with a segment table (分段表)

Segmented Memory

Segment 1

Segment 2

Segment 3

Segment 4

• Why there are “holes” in the physical memory
• What if a program branches into those “holes”?

Physical
Memory

10/18/24 Mengwei Xu @ BUPT 28

• Segmentation with a segment table (分段表)

Segmented Memory

Segment 1

Segment 2

Segment 3

Segment 4

• Why there are “holes” in the physical memory
- Processes come and go..

• What if a program branches into those “holes”?
- Segmentation error..

Physical
Memory

10/18/24 Mengwei Xu @ BUPT 29

• The real segmentation implementation could vary a lot
- Some OSes like Multics allocates a segment for each data structure to allow

fine-grained protection and sharing between processes
- Most modern systems use segments only for coarse-grained memory regions

Segmented Memory

10/18/24 Mengwei Xu @ BUPT 30

• An x86 view of memory segmentation (each 16-bits long)
- Code segment: CS
- Data segment: DS
- Stack segment: SS
- Extra segment: ES, FS GS

• Developer practice
- All CPU instructions are implicitly fetched from the code segment (CS register).
- Most memory references come from the data segment specified by the segment

selector held in the DS register. These may also come from the extra segment
specified by the segment selector held in the ES register, if a segment-override
prefix precedes the instruction that makes the memory reference.

- Processor stack references, either implicitly (e.g. push and pop instructions) or
explicitly (memory accesses using (E)SP or (E)BP registers) use the stack
segment (SS register).

- String instructions (e.g. stos, movs), along with data segment, also use the extra
segment specified by the segment selector held in the ES register.

Segmented Memory

movl $foo, 0x10(%esp)
=
movl $foo, %ss:0x10(%esp)

10/18/24 Mengwei Xu @ BUPT 31

• An x86 view of memory segmentation
- In real mode, there is no segment table

Segmented Memory

In real mode
no segment table!

10/18/24 Mengwei Xu @ BUPT 32

• An x86 view of memory segmentation
- In protected mode, the segment table is called global descriptor table (GDT,全
局描述符表) or local descriptor table (LDT,局部描述符表)

- Linear address = base address + offset

Segmented Memory

Added for 32-bit protected
mode (80386)

A segment descriptor

10/18/24 Mengwei Xu @ BUPT 33

• An x86 view of memory segmentation
- In protected mode, the segment table is called global descriptor table (GDT,全
局描述符表) or local descriptor table (LDT,局部描述符表)

- Linear address = base address + offset

Segmented Memory

10/18/24 Mengwei Xu @ BUPT 34

• The power of segmentation
- Access control
- Code sharing (library routines)
- Inter-process communication
- Efficient management of

dynamically allocated memory

Segmented Memory

10/18/24 Mengwei Xu @ BUPT 35

• The principle downside of segmentation: overhead of managing a
large number of variable size and dynamically growing memory
segments.
- External fragmentation: free space becomes noncontiguous
- Compacting the memory is very slow
- It becomes even more complex if the segments can grow (like heap)

Segmented Memory

10/18/24 Mengwei Xu @ BUPT 36

• AddressTranslation Concept
• Segmentation (分段)
• Paging (分页)

Goals for Today

10/18/24 Mengwei Xu @ BUPT 37

• Paging (分页): allocating memory in fixed-sized chunks called page
frames (页框)
• A page table (页表) stores for each process whose entries contain

pointers to the page frames.
- More compact than segment table because it does not need to store ”bound”

• What’s cool: the pages are scattered across physical memory regions
- Yet within a page, the memory access is contiguous
- For instance, a large matrix might span many pages

• Memory allocation becomes very simple: find a page frame.

Paged Memory

10/18/24 Mengwei Xu @ BUPT 38

Paged Memory

Processor
Virtual Address

Physical Address

Page # Offset
RW
R

R

Frame Permission

PageTable

Frame 1

RW
RW

Frame 2

Frame 3

..

Frame Offset

Physical
Memory

10/18/24 Mengwei Xu @ BUPT 39

Paged Memory

Processor
Virtual Address

Physical Address

Page #
(20 bits)

Offset
(12 bits)

RW
R

Each entry takes
32 bits

R

Frame Permission

PageTable

Frame 1

RW
RW

Frame 2

Frame 3

..

..
4K
4K
4K

Frame Offset

Physical
Memory

One-level page table for 32-bit addressing

How large is the page table?

10/18/24 Mengwei Xu @ BUPT 40

Paged Memory

Processor
Virtual Address

Physical Address

Page #
(20 bits)

Offset
(12 bits)

RW
R

Each entry takes
32 bits

R

Frame Permission

PageTable

Frame 1

RW
RW

Frame 2

Frame 3

..

..
4K
4K
4K

Frame Offset

Physical
Memory

One-level page table for 32-bit addressing

2^20 * 4B
= 4MB

How large is the page table?
• This is per process..
• And 64-bit addressing..

10/18/24 Mengwei Xu @ BUPT 41

Paged Memory

RW
R

R

Frame Permission

PageTable #1

RW
RW

..

..

Physical
Memory

RW
R

RW

Frame Permission

PageTable #2

R
R

Shared

Single-level paging solves most of the issues
(e.g., sharing as shown), but has large page
table, which could be larger than the memory
usage of the process itself!

10/18/24 Mengwei Xu @ BUPT 42

Multi-level Paging

Processor

Virtual Address

Physical Address

index 1 Offset

Page
Directory

Frame 1

Frame 2

Frame 3

..

Frame Offset

Physical
Memory

index 2

Page
Table

Page directory
number (页目
录号)

Page table
number (页表号)

Page offset
(页内偏移)

10/18/24 Mengwei Xu @ BUPT 43

x86 Multi-level Paging

Processor

Virtual Address

Physical Address

index 1
(10 bits)

Offset
(12 bits)

Page
Directory

Frame 1

32 bits

Frame 2

Frame 3

..

..
4K
4K
4K

Frame
(20 bits)

Offset
(12 bits)

Physical
Memory

index 2
(10 bits)

Page
Table
32 bits

Page directory
number (页目
录号)

Page table
number (页表号)

Page offset
(页内偏移)

4K sizeCR3

10/18/24 Mengwei Xu @ BUPT 44

x86 Multi-level Paging

a
b
c
d
e
f
g
h
i
j
k
l

0x00

0x04

0x08

Virtual
Memory

0x00

i
j
k
l

0x04

0x08

e
f
g
h

0x0C

a
b
c
d

0x10

Physical
Memory

Example (4 byte pages)

4
3
1

Page
Table

0

1

2

0000 0000

0001 0000

0000 0100 0000 1100

0000 1000

0000 0100

0x06?

0000 0110 0000 1110

0x0E!
0x09?

0000 1001 0000 0101

0x05!

10/18/24 Mengwei Xu @ BUPT 45

• Each page directory entry (PDE,页目录项) is 32-bits long.

x86 Multi-level Paging

P
R
/
W

U
/
S

P
W
Y

P
C
D

A0P
SGAvail

(9-11)Page-Table Base Address (12-31)

01234567891131

Available for system programmer’s use
Global page (Ignored)
Page size (0 indicates 4 KB)
Reserved (set to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

10/18/24 Mengwei Xu @ BUPT 46

• Each page table entry (PTE,页表项) is 32-bits long.

x86 Multi-level Paging

P
R
/
W

U
/
S

P
W
Y

P
C
D

AD
P
A
T

GAvail
(9-11)Page Frame Base Address (12-31)

01234567891131

Available for system programmer’s use
Global page
Page Table Attribute Index
Dirty
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

10/18/24 Mengwei Xu @ BUPT 47

• Memory management unit (MMU,分页内存管理单元): the hardware
that actually does the translation
- Usually located in CPU

x86 Multi-level Paging

Physical
AddressesCPU MMU

Virtual
Addresses

Untranslated read or write

32 bits
32 bits
32 bits
32 bits

R

WOS

10/18/24 Mengwei Xu @ BUPT 48

• Memory management unit (MMU,分页内存管理单元): the hardware
that actually does the translation
• Page size shall be neither too small or too large

- Too small: large page table sizes; low cache hit ratio
- Too large: memory waste
- Typical range: 512B to 8192B; default 4KB on Linux.

x86 Multi-level Paging

10/18/24 Mengwei Xu @ BUPT 49

• Memory management unit (MMU,分页内存管理单元): the hardware
that actually does the translation
• Page size shall be neither too small or too large
• Each process and kernel has their own page table!

- Not threads
- The same address of different processes translate to different physical locations,

unless the page is shared
- A process can only access/modify its own page table! Otherwise..
- In Linux, there is only one kernel space for all process

x86 Multi-level Paging

10/18/24 Mengwei Xu @ BUPT 50

• Memory management unit (MMU,分页内存管理单元): the hardware
that actually does the translation
• Page size shall be neither too small or too large
• Each process and kernel has their own page table!
• Page tables can be sparse (vs. single-level paging)

- Not every PDE has a corresponding page table.
- Saves a lot of space.
- It’s good to fit page table into one page.

x86 Multi-level Paging

Page
Directory

P=0

P=0

P=1

P=0

P=1

Page
Table

32 bits

32 bits

10/18/24 Mengwei Xu @ BUPT 51

• Page Fault (缺页中断) happens when CPU/MMU accesses a memory
location that is not readily mapped
- Pure (soft): memory swapped out; shared pages; etc.

q After handled, the access will be performed again
- Invalid (hard): write to read-only pages; access to pages not allocated; etc.

q Segmentation fault!

• In modern OSes, malloc does memory allocation “lazily”
- It allocates virtual memory immediately
- The physical memory is allocated only when program accesses that memory

through page fault handler
- Why?

Page Fault

10/18/24 Mengwei Xu @ BUPT 52

Page Fault

Virtual
Memory

Physical
Memory

#include <stdio.h>

void main() {
▸ int* x = (int *) malloc(4096*3);

// ..
x[0] = 1;
// ..
x[4096] = 2;
// ..
return;

}

Three
sequential
virtual
pages

10/18/24 Mengwei Xu @ BUPT 53

Page Fault

Virtual
Memory

Physical
Memory

#include <stdio.h>

void main() {
 int* x = (int *) malloc(4096*3);

// ..
▸ x[0] = 1;

// ..
x[4096] = 2;
// ..
return;

}

1. Page fault
2. Physical page allocation
3. Page mapping

10/18/24 Mengwei Xu @ BUPT 54

Page Fault

Virtual
Memory

Physical
Memory

#include <stdio.h>

void main() {
 int* x = (int *) malloc(4096*3);

// ..
x[0] = 1;
// ..

▸ x[4096] = 2;
// ..
return;

}

10/18/24 Mengwei Xu @ BUPT 55

Before Page Fault (done by hardware)

Detailed Page Fault Process

ref: https://pages.cs.wisc.edu/~cao/cs537/lecture17.txt

Process executes a memory
load or store instruction, or
fetches an instruction

The address is first feed to
cache or instruction prefetch
buffer, if it is there, done;

If it is not there, the address is
feed to TLB, to try to find a
page translation entry for it
(note that the address is virtual
address);

If hit in TLB, check for R/W/E permissions.

If approved, take the physical page number,
concatenate it with the page offset, and send the
address to memory bus;

If not approved,
page fault!

If miss in TLB, MMU tries to find page table entry;

If page table entry found, the entry is put to TLB ---
some entry has to be replaced out of TLB, hardware-
decided replacement, random replacement;

If MMU can‘t find
page table entry or
permission not
satisfied, page fault!

10/18/24 Mengwei Xu @ BUPT 56

Handling Page Fault (done by hardware)

Detailed Page Fault Process

ref: https://pages.cs.wisc.edu/~cao/cs537/lecture17.txt

What kind of fault is it?

R/W/E permission denied: terminate
program and generate core-dump
file, or send a signal to the program

address not in the ranges of addresses that are
allowed to be referenced by the program:
terminate program and generate core-dump files

else, a legitimate page fault
(let's say the virtual page
that is to be faulted in is U)

First find a physical page
for it, say page P

If V has been modified since it is put in
main memory, writeV back to the disk

Change process Q's page table entry for page
V (which holds translations V->P) to invalid;

P already
used?

process Q has
V->P mapping

Y
N

Invalidate corresponding
TLB entry if necessary

Initialize the content of P

U in disk?

Read U from disk (during this time, the
process is blocked, and the CPU scheduler
puts some other process to run on CPU)

Set all bytes
in P to zero

Y

N

After P is initialized, change
the page table entry for U
to be U-->P, and set the
entry to be valid & clean;

After the interrupt processing,
the process will retry the
instruction that was not
finished due to the page fault

10/18/24 Mengwei Xu @ BUPT 57

• Why PDE/PTE use 20 bits for addressing the next-level table or page?

• What needs to be switched on a context switch?

• If a process needs 1 page for its data, how many it will actually take?

• The largest address can be accessed in 2-level paging (32 bits address)?

x86 Multi-level Paging

10/18/24 Mengwei Xu @ BUPT 58

• Why PDE/PTE use 20 bits for addressing the next-level table or page?
- Page directory/tables are always page-aligned (% 4k = 0).

• What needs to be switched on a context switch?
- The page directory, stored in CR3

• If a process needs 1 page for its data, how many it will actually take?
- 3 in total (1 page directory + 1 page table + 1 page for its data)

• The largest address can be accessed in 2-level paging (32 bits address)?
- 4K * 2^10 * 2^10 = 4G

x86 Multi-level Paging

10/18/24 Mengwei Xu @ BUPT 59

• CR3 stores the virtual or physical address of the page directory?

• How about the PDE/PTE?

• The pointers used by kernel is virtual or physical?

• How can kernel manipulate the page directory/tables?

Virtual or Physical??

https://wiki.osdev.org/Paging#Manipulation

10/18/24 Mengwei Xu @ BUPT 60

Tracing Memory Access
• Line 1024: It moves the value zero (shown as $0x0) into the virtual

memory address of the location of the array; this address is
computed by taking the contents of %edi and adding %eax
multiplied by four to it.Thus, %edi holds the base address of the
array, whereas %eax holds the array index (i); we multiply by four
because the array is an array of integers, each of size four bytes.

• Line 1028: It increments the array index held in %eax.
• Line 1032: It compares the contents of that register to the hex

value 0x03e8 (decimal 1000). If the comparison shows that two
values are not yet equal, goes to the Line 1036.

• Line 1036: It jumps back to the top of the loop.

How many times each loop accesses memory and physical pages,
assuming it’s single-level paging system?

4x instructions (code), 1x array (data), and 5x page table.

10/18/24 Mengwei Xu @ BUPT 61

Tracing Memory Access

10/18/24 Mengwei Xu @ BUPT 62

• Since OS only sees the virtual address, how can it manipulate the page
table, e.g., getting the physical address of a given virtual address

Manipulating Page Table

Virtual Address

a c

Page
Directory

X

b
Page
Table

Y

0
1
2

a

0
1
2

b PhyAddr: [Y:c]

..

..

Physical
Memory

10/18/24 Mengwei Xu @ BUPT 63

• Since OS only sees the virtual address, how can it manipulate the page
table, e.g., getting the physical address of a given virtual address

Manipulating Page Table

Virtual Address

a c

Page
Directory

CR3

X

b
Page
Table

Y

0
1
2

a

0
1
2

b PhyAddr: [Y:c]

..

..

Physical
Memory

Self-mapping

10/18/24 Mengwei Xu @ BUPT 64

• Since OS only sees the virtual address, how can it manipulate the page
table, e.g., getting the physical address of a given virtual address

Manipulating Page Table

Virtual Address

a c

Page
Directory

CR3

X

b
Page
Table

Y

0
1
2

a

0
1
2

b PhyAddr: [Y:c]

..

..

Physical
Memory

GeneratedVirtual Address

0b10 ba

PhyAddr: [X:b]

10/18/24 Mengwei Xu @ BUPT 65

• Since OS only sees the virtual address, how can it manipulate the page
table, e.g., getting the physical address of a given virtual address

Manipulating Page Table

Virtual Address

a c

Page
Directory

CR3

X

b
Page
Table

Y

0
1
2

a

0
1
2

b PhyAddr: [Y:c]

..

..

Physical
Memory

GeneratedVirtual Address

0b10 ba

PhyAddr: [X:b]

What if we want X?

10/18/24 Mengwei Xu @ BUPT 66

• Since OS only sees the virtual address, how can it manipulate the page
table, e.g., getting the physical address of a given virtual address

Manipulating Page Table

Virtual Address

a c

Page
Directory

CR3

X

b
Page
Table

Y

0
1
2

a

0
1
2

b PhyAddr: [Y:c]

..

..

Physical
Memory

GeneratedVirtual Address

0b10 ba

GeneratedVirtual Address #2

0b10 a0b10

10/18/24 Mengwei Xu @ BUPT 67

• 4-level: 48 bits

x86_64 Multi-level Paging

10/18/24 Mengwei Xu @ BUPT 68

• 4-level: 48 bits
• 5-level: 64 bits

x86_64 Multi-level Paging

10/18/24 Mengwei Xu @ BUPT 69

• Pros:
- Only need to allocate as many page table entries as we need for application

q In other wards, sparse address spaces are easy
- Easy memory allocation
- Easy Sharing

q Share at segment or page level (need additional reference counting)
• Cons:

- One pointer per page (typically 4K – 16K pages today)
- Page tables need to be contiguous

q However, previous example keeps tables to exactly one page in size
- Two (or more, if >2 levels) lookups per reference

q Seems very expensive!

Multi-level Paging Summary

10/18/24 Mengwei Xu @ BUPT 70

• What about a tree of tables?
- Lowest level page table Þ memory still allocated with bitmap
- Higher levels often segmented

• Could have any number of levels. Example (top segment):

Segments + Paging

page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Offset

Physical Address

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W

Physical
Page #

Check Permissions

Access
Error

10/18/24 Mengwei Xu @ BUPT 71

• Intel x86 and Linux
- 8086 era: segmentation and paging are both used
- 80386 era: the segmentation is not really used

qThe processor provides 4 modes: none; paging only; segmentation only; both.
qThe CS is always set to 0 and the limit is 2^32.

- x86_64 era: segmentation is considered as a legacy and not used in most OSes

• Now, everyone uses paging, few make any real use of segmentation.

Segmentation vs. Paging

https://softwareengineering.stackexchange.com/questions/100047/why-not-segmentation

10/18/24 Mengwei Xu @ BUPT 72

• How to implement an efficient fork()?
- Do not copy all contents immediately, but mark the page/segment tables of both

child and parent processes as “read-only”
- When a write (from either child or parent) happens, it traps into kernel through

page fault, and a private page is copied.

• A fork() followed immediately by a exec(), how many pages are really
copied?

Copy-on-Write (COW)

10/18/24 Mengwei Xu @ BUPT 73

• Look at the function get_physaddr in
https://wiki.osdev.org/Paging#Manipulation, and explain how it works
line by line.

• If the page size is 8K, how the address translation will work? Explain step
by step in details, e.g., how the virtual address is splited, how large is the
page directory and page table, etc..

Homework

https://wiki.osdev.org/Paging

